A fluid at a pressure of 3 bar.. 0.18 m3/kg. Solved problem



A fluid at a pressure of 3 bar, and with specific volume of 0.18 m3/kg, contained in a cylinder behind the piston expands reversibly to a pressure of 0.06 bar according to a law, p = C/v2, where C is a constant. Calculate the work done by the fluid on the piston.




A fluid at a pressure of 3 bar, and with specific volume of 0.18 m3/kg, contained in a cylinder behind the piston expands reversibly to a pressure of 0.06 bar according to a law, p = C/v2, where C is a constant. Calculate the work done by the fluid on the piston.

A fluid at a pressure of 3 bar.. 0.18 m3/kg. Solved problem
A fluid at a pressure of 3 bar.. 0.18 m3/kg. Solved problem
A fluid at a pressure of 3 bar.. 0.18 m3/kg. Solved problem
A fluid at a pressure of 3 bar.. 0.18 m3/kg. Solved problem




1. The properties of a closed system following the relation between pressure and volume as pV = 3 where p is in bar V is in m3. Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar.

Click here for answer.

2. To a closed system 150 kJ of work is supplied. If the initial volume is 0.6 m3 and pressure of the system changes as p = 8 -4V, where p is in bar and V is in m3, determine the final volume and pressure of the system.

Click here for answer.

3. A fluid at a pressure of 3 bar, and with specific volume of 0.18 m3/kg, contained in a cylinder behind the piston expands reversibly to a pressure of 0.06 bar according to a law, p = C/v2, where C is a constant. Calculate the work done by the fluid on the piston.

Click here for answer.

4. A cylinder contains 1 kg of a certain fluid at an initial pressure of 20 bar. The fluid is allowed to expand reversibly behind a piston according to a law pV2 = constant until the volume is doubled. The fluid is then cooled reversibly at constant pressure until the piston regains its original position ; heat is then supplied reversibly with the piston firmly locked-in position until the pressure rises to the original value of 20 bar. Calculate the net work done by the fluid, for an initial volume of 0.05 m3.

Click here for answer.

5. Calculate the dryness fraction (quality) of steam which has 1.5 kg of water in suspension with 50 kg of steam.

Click here for answer.




IMO website link click here

Leave a Comment

Your email address will not be published. Required fields are marked *